
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 2 , NO. 1, PART 11, JANUARY 1994 115 

Auditory Models and Human Performance in Tasks 
Related to Speech Coding and Speech Recognition 

Oded Ghitza, Senior Member, IEEE 

Abstract- Auditory models that are capable of achieving hu- 
man performance in tasks related to speech perception would 
provide a basis for realizing effective speech processing systems. 
Saving bits in speech coders, for example, relies on a perceptual 
tolerance to acoustic deviations from the original speech. Percep- 
tual invariance to adverse signal conditions (noise, microphone 
and channel distortions, m m  reverberations) and to phonemic 
variability (due to nonuniqueness of articulatory gestures) may 
provide a basis for robust speech recognition. A state-of-the- 
art auditory model that simulates, in considerable detail, the 
outer parts of the auditory periphery up through the auditory 
nerve level is described. Speech information is extracted from 
the simulated auditory nerve firings, and used in place of the 
conventional input to several speech coding and recognition 
systems. The performance of these systems improves as a re- 
sult of this replacement, but is still short of achieving human 
performance. The shortcomings occur, in particular, in tasks 
related to low bit-rate coding and to speech recognition. Since 
schemes for low bit-rate coding rely on signal manipulations that 
spread over durations of several tens of ms, and since schemes 
for speech recognition rely on phonemiclarticulatory information 
that extend over similar time intervals, it is concluded that the 
shortcomings are due mainly to a perceptually related rules over 
durations of 50-100 ms. These observations suggest a need for 
a study aimed at understanding how auditory nerve activity 
is integrated over time intervals of that duration. We discuss 
preliminary experimental results that confirm human usage of 
such integration, with different integration rules for different 
time-frequency regions depending on the phoneme-discrimination 
task. 

I. INTRODUCTION 

N building speech-processing systems, we make the ax- I iomatic assumption that the speech waveform contains the 
entire information produced by the human speech production 
mechanism. In a particular speech-processing system, how- 
ever, only part of this information is used, depending on the 
task for which the system is designed. For speech recognition 
tasks, for example, only phonemic information is needed. For 
speech coding tasks, on the other hand, information associated 
with the quality of speech is also required. 

Traditionally, the task-related information is extracted from 
the speech waveform (or its Fourier representation) using 
statistical inference methods. This paper discusses an alterna- 
tive way to extract this information that relies on processing 
principles derived from properties of the auditory system. The 
premise of this approach is that such processing principles 
can provide a basis for realizing effective speech processing 
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systems. Saving bits in speech coders, for example, relies on 
perceptual tolerance to acoustic deviations from the original 
speech. Perceptual invariance to adverse signal conditions 
(noise, microphone and channel distortions, room reverber- 
ations) and to phonemic variability (due to nonuniqueness of 
articulatory gestures) may provide a basis for robust speech 
recognition. 

The potential advantages that can be gained by utilizing 
auditory models for speech processing depend on how accurate 
the models are in mimicking human performance. And build- 
ing such accurate models depend on the amount of knowledge 
we have about the auditory system. This knowledge is acquired 
by combining data that has been collected in both psychophys- 
ical and physiological studies of the auditory system. Studies 
of cochlear mechanics and studies of mechanical to neural 
transduction in the cochlea provide insight into the processing 
of sounds in the pre-auditory-nerve stages of the auditory 
periphery. Studies of the population response of single auditory 
nerve fibers in the cat to speech-like signals provide a rich 
source of information concerning the principles by which such 
sounds are encoded in the auditory nerve. In contrast, little is 
known, at present, about the functional operation of auditory 
nuclei beyond the auditory nerve. 

Current research activity in auditory modeling is mostly 
devoted to the study of the auditory periphery. Several papers 
have been published that examine how the response of the 
cochlea may be processed to provide a relevant representation 
of the speech signal. Each study utilizes a computational 
model to simulate either the direct firing activity or another 
related representation of the cochlear output. However, the 
manner in which this information is processed differs among 
the studies, reflecting differences in the structural properties of 
the central processor hypothesized by each study. These struc- 
tural properties can be described by using a two-component 
characterization: the place/nonplace component, that indicates 
if the central processor utilizes explicit knowledge about the 
fibers’ tonotopic place of origin in the cochlear partition, and 
the ratehemporal component, that indicates whether the central 
processor uses instantaneous firing rate measurements alone 
or higher-order firing statistics (e.g., the interspike interval 
statistics). Using this two-component criterion, the following 
categories are traditionally used: (1) placehate category, where 
the central processor possesses explicit knowledge of place 
and uses only instantaneous rate information [7], [241, [30], 
(2) place/temporal category, where place information is used 
together with detailed temporal information of local neural 
responses [8], [14], [31], [32], and (3) nonplace/temporal 
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category, where place information is omitted altogether and 
the only sources of information are the temporal properties of 
the global neural response [l], [9].’ 

This paper focuses on a model that belongs to the last 
category. Detailed modeling of the auditory periphery (up 
through the auditory nerve level) is used to simulate the 
firing activity of the auditory nerve. The model consists of 
190 cochlear channels, distributed from 200 Hz to 7000 Hz 
according to the frequency-position relation suggested by [ 151. 
Each channel comprises Goldstein’s nonlinear model of the 
human cochlea [ 131, followed by an array of five level-crossing 
detectors that simulate the auditory nerve fibers innervating 
one inner hair cell. At this junction of the model the speech 
sound is represented as a 950-dimensional point process (190 
channels times five levels per channel) that simulates the firing 
activity of the auditory nerve fibers. 

One way to achieve human performance is to process the 
simulated auditory nerve firing activity according to princi- 
ples derived from properties of post auditory-nerve nuclei. 
Unfortunately, such infomation is not available at present. 
Our approach, therefore, is to process the simulated auditory 
nerve firing patterns according to principles that are motivated 
by observed properties of actual auditory nerve response. In 
Section 11, a representation of this kind is described as an 
ensemble interval histogram (EIH). Conceptually, the EIH 
is a measure of the spatial (tonotopic) extent of coherent 
activity across the simulated auditory nerve. This measure 
signifies different physical properties of the acoustic stimulus 
depending on frequency: Information at low frequencies is rep- 
resented in terms of the extent of coherent firing activity that 
is phase-locked to the underlying resolved components, while 
information at high frequencies is represented as the extent 
of coherent instantaneous rate of the firing activity driven by 
a wideband, unresolved (in frequency) temporal event. This 
representation is in accordance with observed properties of 
auditory nerve response, which show a diminishing degree of 
phase locking of the neural firings to the driving stimulus, as 
the frequency of the stimulus increases (e.g., [18]). 

As pointed out before, the advantages that can be gained by 
utilizing auditory models for speech processing depend on how 
accurate the models are in mimicking human performance. 
In Sections 111 and IV we evaluate the capability of the 
EIH to achieve human performance. Using psychophysical 
results as a reference we examine the extent to which speech 
processing systems that use the auditory model mimic human 
performance, in tasks related to speech recognition and to 
speech coding. In Section I11 we evaluate the EIH in the 
context of a speech recognition task (after [lo]). We first 
identify a psychophysical experiment that addresses such a 
task, the Diagnostic Rhyme Test, or DRT [33] and present 
data we have collected on how accurate human listeners are 
in performing the task. Next, we simulate the DRT procedure. 
The auditory periphery is replaced by the EIH and the higher 
auditory elements by an automatic speech recognition system. 
Errors are displayed in terms of a distribution among six 

For an excellent overview of auditory models, the reader is referred to 
the theme issue “Representation of Speech in the Auditory Periphery”, edited 
by S. Greenberg, Journal of Phonetics, Volume 16, No. 1, January 1988. 

phonemically distinctive features. The error patterns of the 
simulated procedure are then compared with those of the 
human subjects, to provide a quantitative measure on how 
close the model performance is to the actual human perfor- 
mance. The evaluation process shows that performance greatly 
improves by replacing a conventional speech representation by 
the EIH, but is still short of achieving human performance. 

In Section IV we evaluate the EIH in the context of speech 
coding. Following the methodology used in Section 111, we 
first identified a psychophysical experiment that addresses 
a speech coding task (the Mean-Opinion-Score, or MOS, 
a test which is widely used to assess quality of speech 
coders) and collected data on how human listeners score 
the quality of synthetic speech produced by different speech 
coding systems. Then, we use the EIH as a basis for a 
system aiming at predicting the MOS. Since the EIH is 
computed from simulated auditory nerve responses modeled 
in considerable detail, we hypothesize that it contains only 
perceptually-relevant speech information. If this hypothesis 
holds, perceptual differences between the original and the 
coded speech should be realistically reflected in the EIH 
domain. To examine this hypothesis, we mimicked the MOS 
test by measuring the &-norm of the difference between the 
EIHs of the original and the coded speech. For comparison 
purposes we also examined the &-norm in the cepstral 
domain. The comparison shows that EIH provides better MOS 
predictions for coders with a bit-rate of 16 kbit/s and above, 
but underrates the quality assessment of CELP-type of coders 
(i.e., coders with a bit-rate of 8 kbit/s and below). 

The evaluation process described in Sections 111 and IV 
demonstrates that generally, performance is improved by re- 
placing conventional speech representation methods by the 
auditory model, but is still short of achieving human per- 
formance. The evaluation process indicates that shortcomings 
occur, in particular, in tasks related to low bit-rate coding and 
to speech recognition. In Section V-A we discuss possible 
reasons for this inadequacy. Since schemes for low bit-rate 
coding rely on signal manipulations that spread over durations 
of several tens of ms, and since schemes for speech recognition 
rely on phonemic/articulatory information that extend over 
similar time intervals, it is concluded that the shortcomings 
are due mainly to the inappropriate manner by which we 
currently measure a distance between two speech segments. 
A typical way to represent a speech segment is in terms of an 
ordered sequence of observations, sampled at a uniform rate. 
(The observations can be expressed, for example, in terms of 
EIH or in terms of Fourier power spectrum). Hence, to measure 
the distance between two speech segments we must define a 
distance metric between two sequences of observations. This, 
in turn, requires a definition of a distance metric between 
two single observations. In the experiments of Sections I11 
and IV, the distance between two single EIH observations is 
measured in the &-norm sense. The distance between two 
sequences of EIH observations is measured as the accumulated 
sum of distances between corresponding single observations 
along a path that best matches the sequences in the sense 
of minimizing the accumulated sum. The experimental results 
of Sections 111 and IV suggest that both, the &-norm (of 
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the difference between two single EIH observations) and the 
accumulated sum (for two sequences of EIH observations) 
are inadequate measures for the purpose of predicting human 
performance. They also imply a need for a study aimed at 
understanding how auditory nerve activity is integrated over 
durations of 50-100 ms. In Section V-B we discuss prelim- 
inary experimental results that confirm human usage of such 
integration, with different integration rules for different time- 
frequency regions depending on the phoneme-discrimination 
task. 

11. THE ENSEMBLE INTERVAL HISTOGRAM (Em) 
REPRESENTATION 

This section describes the EIH model. The model comprises 
two stages, one that models the pre-auditory-nerve section 
and one that stands for the post auditory-nerve section of the 
auditory periphery. The pre-auditory-nerve section has been 
modeled in considerable detail, guided by the physiologi- 
cal structure of the auditory periphery. In contrast, the post 
auditory-nerve section is represented in an heuristic manner 
since little is known, so far, about the operation of auditory 
functions associated with that part of the auditory periphery. 
In Section 11-B, we review the pre-auditory-nerve portion of 
the auditory periphery. The considerations in modeling this 
part of the auditory periphery are discussed next: the model 
for the mechanical displacement of the basilar membrane is 
described in Section 11-C, and the model for the mechanical- 
to-neural transduction is described in Section 11-D. The second 
stage of the EIH model is discussed in Section 11-E. 

Before describing the EIH model, let us briefly describe the 
structure of the mammalian auditory system.* This will put 
into perspective the state of our knowledge and what part of 
it is being utilized in our current models. 

A. A Brief Description of the Auditory Pathway 
The auditory system is symmetrically organized around 

a midline between the left and the right sides (see Fig. 
1). The most peripheral part at each side consists of the 
external and middle ears, the cochlea, and the auditory 
nerve. This portion of the auditory system will be described 
in detail, in Section 11-B. The auditory nervous system, which 
receives its inputs from both left and right auditory nerves, 
consists of several neural nuclei that can be grouped into three 
major parts-the auditory brainstem, the auditory midbrain, 
and the auditory cortex. Each nucleus can be divided into 
different zones, characterized by their morphological structure, 
neurophysiological response, and their input/output mappings. 
The main information flow is along an ascending pathway that 
begins at the extemal ears and ends in the auditory cortex. In 
parallel, there is an information flow in a descending pathway 
that begins at the auditory cortex and can be traced all the 
way down to the middle ears. 

Fig. 1 shows the major nuclei of the mammalian auditory 
system. The auditory nerve at each side projects to its cor- 
responding cochlear nucleus which is the first nucleus in 

are recommended [27] and 1191. 
For an introductory survey of the auditory system the following references 

J 

LEFl 

MIDLINE 

RIGHT 

Fig. 1. Major nuclei of the mammalian auditory system. 

the auditory brainstem. The projections of various divisions 
in each cochlear nucleus form two parallel branches, one 
on the same side of the cochlear nucleus and the other 
across the midline. These projections, on both sides, proceed 
either directly or indirectly via other brainstem nuclei (the 
trapezoid body and the superior olivary complex), to the 
auditory midbrain nuclei (the lateral leminiscus and the 
inferior colliculus). The inferior colliculus provides the major 
ascending path to the medial geniculate body which, in turn, 
provides inputs to the primary auditory cortex. 

B. Physiological Basis for the EIH Model 
A diagram of the pre-auditory-nerve portion of the auditory 

periphery is shown in Fig. 2(a). This part of the auditory 
periphery comprises three distinct parts: the outer ear, the 
middle ear, and the inner ear. The outer ear consists of the 
pinna (the ear surface surrounding the canal in which sound 
is funneled) and the external canal. Sound waves are guided 
through the outer ear to the middle ear, which consists of 
the eardrum (which moves due to the sound pressure) and 
a mechanical transducer comprises the hammer, the incus 
and the stapes (which conveys the motion of the eardrum 
into mechanical vibrations along the inner ear). The inner 
ear consists of the cochlea, which is a fluid-filled chamber 
partitioned by the basilar membrane, and the auditory nerve. 
The mechanical vibrations at the entrance of the cochlea (a 
2 1/2 tum, snail-like tube, shown as a straight tube in Fig. 
2(b)) excites the fluid inside the cochlea and cause the basilar 
membrane to vibrate at places associated with the frequencies 
of the input acoustic wave. Distributed along the basilar 
membrane (in a dense but discrete manner) are sensors called 
inner hair cells (IHC) that are innervated by the auditory 
nerve fibers and transform the mechanical displacement of the 
basilar membrane into firing activity at the nerve fibers. 

, 
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(b) 
Fig. 2. (a) A physiological model of the pre-auditory-nerve parts of the 
auditory periphery. (b) A simplified view of (a). The 2 1/2 tum, snail-like 
shape of the cochlea is shown as a straight tube. 

The mechanical displacement of the basilar membrane, at 
any given place, can be viewed as the output signal of a 
band-pass filter whose frequency response has a resonance 
peak at a frequency which is characteristic of the place. This 
resoonance frequency is called characteristic frequency (CF). 
The log of CF is approximately proportional to distance along 
the membrane, and the distribution of the inner hair cells 
(IHC’s) along the cochlear partition is essentially uniform. 
(There are some 4000 IHC’s along the basilar membrane). The 
displacement of the basilar membrane is reflected in the AC 
component of the IHC receptor potential. The transformation 
from mechanical motion to receptor potential involves several 
nonlinearities, the most relevant to the present discussion 
being the half-wave rectification which is a consequence of 
the unidirectional depolarization of the IHC. Each IHC is 
innervated by approximately ten auditory-nerve fibers, whose 
spontaneous activity ranges between 0 and 100 discharges per 
second. The spontaneous rate is highly correlated with the 
fiber diameter and the size of the synaptic region between the 
fiber and inner hair cell. The spontaneous discharge rate is 
also correlated with the threshold of response. For any given 
CF region, fibers with high spontaneous rate tend to have 
between 5 and 20 dB lower threshold than units with low 
rates of background activity. Occasionally, low-spontaneous 
units may have as much as 40-60 dB higher thresholds than 
high-spontaneous units of comparable CF [22], [23]. 
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Fig. 3. The ensemble interval histogram (EM) model. 
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Fig. 4. The h4BPNL cochlear model (after [13]). 

C .  Modeling the Mechanical Displacement 
of the Basilar Membrane 

The EIH model is schematically illustrated in Fig. 3. Its 
first stage represents the auditory periphery up through the 
level of the auditory nerve. The middle ear is modeled as a 
high-pass filter, with a cutoff frequency at 1000 Hz and a 
slope of 20 dB/decade. The mechanical displacement of the 
basilar membrane is sampled by 190 IHC channels distributed 
from 200 Hz to 7000 Hz according to the frequency-position 
relation suggested by [15] 

(1) 

where F is frequency in Hz, z is the normalized distance along 
the membrane (i.e., 0 < z < 1, z = 0 is the apex) and the 
appropriate constants for the human cochlea are A = 165.4 and 
a = 2.1. The corresponding mechanical motion in each channel 
is simulated using a model of the human cochlea suggested 
by Goldstein (1990). The model is termed multibandpass 
nonlinear filter (MBPNL). It operates in the time domain 
and changes its gain and bandwidth with changes in the 
input intensity, in accordance with observed psychophysical 
behavior. The MBPNL model is shown in Fig. 4. The lower 
signal processing path (Hl-H2) is a compressive nonlinear 
filter that represents the sensitive, narrowband compressive 

F = A( loaz - 1) 
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Fig. 5.  Iso-input frequency response of the MBPNL model at C F  = 
3400 Hz. 

nonlinearity at the tip of the basilar-membrane response. The 
upper signaling path (H3-H2) is a linear filter that represents 
the insensitive, broadband linear tail response of basilar- 
membrane response (after [ 131). 

The “iso-input” frequency response of an MBPNL filter 
at CF of 3400 Hz is shown in Fig. 5. For an input signal 
s ( t )  = Asin(w,t), with A and w, fixed, the MBPNL behaves 
as a linear system, with a fixed “operating point” on the 
nonlinear curves f and f-l of Fig. 4, determined by A. 
Fig. 5 shows the iso-input frequency response of the system 
for different values of A: For a given A, a discrete “chirp” 
signal was presented to the MBPNL, with a slowly changing 
frequency. Changes in w, occurred only after the system 
reached steady-state, for a proper gain measurement. For a 
0 dB input level (A = l), the gain at CF is approximately 40 
dB. As the input level increases the gain drops, the bandwidth 
increases and CF shifts. These observations are in accordance 
with psychophysical behavior. 

Fig. 6 illustrates the high degree of overlap among the 
simulated cochlear channels. It shows the iso-input response at 
input level of 60 dB. Only one of every ten channels is drawn. 

D. Modeling the Mechanical to Neural Transduction 
The ensemble of nerve fibers innervating a single IHC 

is simulated with an array of level-crossing detectors at the 
output of each cochlear filter (i.e., each level-crossing detector 
is equivalent to a fiber of specific threshold). A neural firing is 
simulated as the positive-going level crossing. The thresholds 
are distributed across a range of positive levels, to account 
for the half-wave rectification nature of the IHC receptor 
potential. The values assigned to the level j of every filter 
is a random Gaussian variable, with a mean, Lj,  and a 
standard deviation, aj = 0.2Lj. The mean values, {Lj}j”=l, 
are uniformly distributed on a log scale over the amplitude 
range of the MBPNL output. The randomness in the values 
of the j t h  level across the cochlear channels simulates the 
fact that diameters and synapse-connection sizes of fibers 
innervating the same side of different IHC’s along the cochlear 
partition have a certain amount of intrinsic variability (which is 
characteristic of most physiological systems). The model omits 
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Fig. 6. An illustration of the degree of overlap among the cochlear channels. 
Shown are the iso-input response at input level of 60 dB. Only one of every 
ten channels is drawn. 
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Fig. 7. Simulated auditory-nerve activity for the first 60 ms inside the vowel 
[o] in the word “gob.” The abscissa represents time and the ordinate represents 
the characteristic frequency of the MC channels. Note the logarithmic scale of 
the characteristic frequency, which represents the place-to-frequency mapping 
at the basilar membrane. In the figure, a level-crossing occurrence is marked as 
a single dot, and the output activity of each level-crossing detector is plotted 
as a separate trace. Each MC channel contributes five parallel traces, with 
the lower trace representing the lower-threshold level-crossing detector. If the 
magnitude of the filter’s output-signal is low, only one level will be crossed, 
as is the case for the very top channels of the figure. However, for large 
signal magnitudes, several levels will be activated, creating a “darker” area 
of activity. The figure also illustrates how the length of the analysis window 
in each channel is related to its CF. 

certain properties of the auditory-nerve function. By modeling 
the nerve-fiber firing activity as a point process produced 
by a level-crossing detector, the probabilistic nature of the 
neural firing mechanism is essentially neglected. Thus, the 
level crossings should be interpreted as the combined firing 
activity of a collection of fibers originating in different IHC’s 
located in a range along the basilar membrane small enough 
to ensure similar cochlear tuning characteristics. 

The outputs of the level-crossing detectors represent the 
discharge activity of the auditory-nerve fibers in terms of a 
950-dimensional point process (190 channels times five levels 
per channel). Fig. 7 shows simulated auditory-nerve activity 
for the first 60 ms inside the vowel [ah] in the word “gob.” 
The abscissa represents time and the ordinate represents the 
characteristic frequency of the IHC channels. Note the loga- 
rithmic scale of the characteristic frequency, which represents 
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the place-to-frequency mapping on the basilar membrane. In 
the figure, a level-crossing occurrence is marked as a single 
dot, and the output activity of each level-crossing detector 
is plotted as a separate trace. Each IHC channel contributes 
five parallel traces, with the lower trace representing the 
lower-threshold level-crossing detector. If the magnitude of 
the filter’s output signal is low, only one level will be crossed, 
as is the case for the very top channels of Fig. 7. However, 
for large signal magnitudes, several levels will be activated, 
creating a “darker” area of activity. 

E .  Measure of Synchrony and Instantaneous Rate Across the 
Simulated Fibers 

The 950-dimensional point process at the output of the level- 
crossing detectors serves as the input to the second stage of the 
EIH. With the purpose of achieving human performance, this 
point process, which simulates the auditory nerve firing activ- 
ity, would have to be processed following principles derived 
from properties of post auditory-nerve nuclei. Unfortunately, 
such information is not available at present. Our approach, 
therefore, is to apply processing principles that are motivated 
by observed properties of actual auditory nerve response. 

Measurements of firing responses of cats’ auditory-nerve 
fibers (e.g., [3]-[6], [29], [37]) show a significant difference 
between the properties of the firing pattems of low CF 
(say, below loo0 Hz) and high CF fibers. This difference 
is determined mainly by the mechanical properties of the 
basilar membrane. At low CF’s, harmonics are resolved with 
high precision and neural discharges of auditory nerve fibers 
are phase locked to the underlying driving component. That 
is, synchrony (between neural discharges and the underlying 
driving component) is maintained. At high CF’s, frequency 
resolution is poor and the phase-locking of the discharges 
is greatly reduced. The instantaneous rate of firing, however, 
conveys temporal information with fine time resolution. 

It is also evident from these measurements that as the 
sound pressure level increases, more fibers fire in coherence 
with certain temporal properties of the stimulus waveform. 
For this reason, we suggest the spatial (tonotopic) extent 
of such coherent activity as a measure of the perceptual 
importance of the underlying temporal events. The extent of 
coherent activity signifies different properties of the underlying 
stimulus, depending on frequency. At low frequencies, it is 
the extent of coherent firing activity phase-locked to an 
underlying resolved component. At high frequencies, it is the 
extent of coherent instantaneous rate of the firing activity 
driven by a wideband, unresolved (in frequency) temporal 
event. Obviously, there is no distinct boundary between these 
auditory nerve regions. Rather, the change in properties is 
gradual (e.g., [ 181). 

In the model, the amount of coherent neural activity across 
the simulated fiber array is measured by determining the 
similarity in the short-term interval probability density func- 
tions of individual level-crossing detectors. An estimate of 
the interval probability density function of a given level 
can be obtained by computing a histogram of the intervals 
from the point process data produced by the level-crossing 
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Fig. 8. (a) The contribution of the ith channel to the Ensemble Interval 
Histogram for an input signal s ( t )  = Asin(2rf0t). Only the lowest four 
level-crossing detectors are contributing nonzero histograms to the ensemble. 
(b) The contribution of five successive channels IHz(f)l ,2=1,2, . . .,5, to the 
EM, for an input signal s ( t )  = Asin(2rfot). Channel i contributes to the 
f0 bin of the EM provided that A I HZ ( f O )  I exceeds any of the level-crossing 
thresholds. 

detector. Only intervals between successive upward-going 
level crossings are considered. Since we prefer an auditory 
representation in the frequency domain, the histogram of 
the inverse intervals is computed. This is accomplished by 
distributing the reciprocal of the intervals (i.e., converting the 
intervals into units of frequency) in a histogram consisting 
of successive bins, ranging from 0 to, say, 4000 Hz. (We 
shall discuss the considerations involved in choosing the 
bin allocation, the window length and the number of bins 
momentarily). The similarity between all individual interval 
probability density functions is measured by collecting the 
individual histograms into one ensemble interval histogram 
(EIH) (via summing the corresponding histogram bins across 
all levels and all channels). The resulting representation is 
the EIH. The tonotopic extent of a coherent neural activity 
generated by an underlying temporal event is encoded as the 
magnitude of the corresponding bin in the EIH. 

To illustrate this point, consider the case where the input 
signal is s ( t )  = Asin(2.lrf0t). First, consider the channel 
with CF equal to fo (see Fig. 8(a)). For a given amplitude A, 
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the cochlear filter output will activate only part of the level- 
crossing detectors, depending on the value of A. For a given 
detector, the time interval between two successive positive- 
going level crossings is l/fo. Since the histogram is scaled 
in units of frequency, this interval contributes a count to the 
fo bin. For the input signal in the illustrated example, all of 
the intervals are the same, resulting in a histogram where the 
magnitude of each bin, save one (fo), is zero. As the signal 
amplitude A increases, more levels are activated. As a result, 
this cochlear filter contributes additional counts to the fo bin 
of the EIH. Since the crossing levels are equally distributed on 
a log-amplitude scale, the magnitude of any EIH bin is related, 
in some fashion, to decibel units. However, this relation is not a 
straightforward one since there are several sources contributing 
counts to the fo bin in a nonlinear manner. Fig. 8(b) shows 
an input signal s ( t )  = Asin(2.rrfot) driving five adjacent 
cochlear channels. For the sake of simplicity, we assume that 
the filters are linear, with an amplitude response IH;(f)l and 
a phase response q5;(f), i=1,2,-.. 3. Due to the shape of 
the filters, more than one cochlear channel will contribute 
to the fo bin. In fact, all the cochlear filters which produce 
si(t) = AIHi(f,)l sin(2.rrfot + q5;(fo)) will contribute to the 
fo bin of the EIH, provided that A)Hi(f,)( exceeds any of the 
level crossing thresholds. In Fig. 8(b) only cochlear filters 2, 
3 and 4 are contributing nonzero histograms to the EIH. The 
number of counts is different for each filter, depending on the 
magnitude of A(Hi(fo)l . 

Two factors affect the properties of the interval histogram, 
the bin allocation over the frequency range and the choice of 
the window length. Motivated by the tonotopic organization 
along the auditory pathway we assign the bins according to the 
ERB-rate scale (shown in Fig. 9, after [26]), which is related to 
the psychophysical critical band assignment, or the Bark scale. 
In the following paragraph we will define the EM-rate scale. 

Let IH( f )  I be a unimodal frequency response of a filter, and 
let IH(fo)l be the maximum gain of the filter, at frequency fo. 
The equivalent rectangular bandwidth (ERB, in Hz) of IH(f) l  
is defined as follows 

In words, ERB is the bandwidth of an hypothetical rectangular 
filter, with a gain of IH(fo)l ,  such that the integral over its 

EIH, EIH, 
Linear ERB 

0 20 40 60 t, ms binallocation bin-allocation 

1 W ms-long windars 

5 ms-long windcws 

Fig. 10. An illustration of the relationship between the bandwidth charac- 
teristics of the filters, the window length and the bin allocation. Depending on 
frequency, EM signifies different physical properties of the acoustic stimulus, 
from synchrony at low frequencies to instantaneous rate at high frequencies. 

frequency response is equal to the integral over IH(f)I . Using 
psychophysical measurements of the ERB of human auditory 
filters, [26] derived the following quadratic fit, as a function 
of the center frequency of the auditory filter 

ERB = 6.23F2 +93.39F + 28.52. (3) 

Where F is frequency in kHz. (Note that very similar E m ' s  
can be derived from (2) of Greenwood, where an ERB at a 
given frequency corresponds to a constant distance of 0.85 
mm on the basilar membrane [25]). Using the ERB of the 
auditory filter as a unit of measurement, Moore and Glasberg 
[26] suggested the ERB-rate scale which relate number of 
ERB's to frequency. This scale was obtained by integrating 
the reciprocal of (3), yielding 

F + 0.312 
F + 14.675 

ERB-rate = 11.1710ge + 43.0. (4) 

Where F is frequency in kHz. (The constant 43.0 was chosen 
to make the number of ERB's= 0 when F = 0.) To 
summarize, (3) specifies the ERB of a human auditory filter 
at a given frequency F ,  and (4) determines the number of 
successive ERB's which covers the frequency range [ O ,  F]. 
Using the ERB-rate scale, we quantized the frequency range 
[0, 40001 Hz into 32 bins, which is roughly the number of 
ERB's in this frequency range. Momentarily, we will illustrate 
how the choice of bin allocation determine the properties of 
the EIH. 

Another parameter that affects the properties of the interval 
histogram is the size of the observation window. Motivated, 
again, by the tonotopic organization along the auditory path- 
way, we set the window length to be inversely proportional 
to center frequency. That is, at time to ,  intervals produced by 
a level-crossing detector located at center frequency CFo are 
collected over a window of length -& that ends at time to  
(see Fig. 7). 

Fig. 10 illustrates the relationship between the bandwidth 
characteristics of the filters, the window length and the bin 
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allocation. The figure is organized from left to right. It shows 
the response of two hypothetical cochlear filters, H I  and H z ,  
to a pulse-train input, s( t ) ,  with a pulse every 20 ms. The 
center frequency of HI  is 100 Hz, and that of HZ is 2000 
Hz, with bandwidths of 30 Hz and 300 Hz, respectively. 
The bandwidths of the filters dictate the properties of their 
outputs. Thus, HI,  which resolves the frequency component 
at 100 Hz, results in a sinusoidal output yl(t). In contrast, 
the output of H2 is wider in bandwidth and follows sharp 
temporal changes of s( t ) .  (In the limit, with the pulse-width 
approaching zero, yz(t) is the impulse response of the filter). 
In the example of Fig. 10, EIH is produced at a uniform rate, 
once every 5 ms, and only interval histograms of the zero 
crossings are considered. Because of our choice of window 
length, zero-crossings of yl(t)  are collected over a 100 ms 
window, and zero-crossings of yZ(t) are collected over a 5 
ms window. Fig. 10 shows the location of five successive 
windows, for yl(t)  and yz(t). The interval histograms for 
these windows are shown in the right-hand-side of the figure. 
The figure shows typical interval histograms for two choices 
of bin allocation, linear (with, say, 128 bins over [ O ,  40001 
Hz and a fine frequency resolution) and ERB (with 32 bins 
over the same frequency range). In the case of linear bin 
allocation, the narrow-band signal y1 (t) contributes identical 
intervals only to the 100-Hz bin. And since the window 
length of H1 is much longer than the frame rate, the interval 
histograms hardly change from frame to frame. In contrast, 
the wide-band signal yz (t) contributes intervals of different 
values, resulting in histograms that extend over several bins. 
And since the window length of H2 is similar to the frame 
rate, the histograms change rapidly from frame to frame, 
demonstrating high temporal resolution. In the case of the ERB 
bin allocation, bins at low frequencies are narrow, resulting in 
fine frequency resolution, similar to the frequency resolution 
of the histograms with linear bin allocation. However, bins at 
high frequencies are wide-covering a filter bandwidth (e.g., 
300 Hz at CF=2000 H z t a n d  a frequency range of one ERB 
bin contains several linearly allocated bins. Therefore, the 
interval count at this ERB bin equals to the sum of intervals 
over all the linearly allocated bins at that frequency range. In 
other words, at time t o ,  ERB bins at high frequencies contain 
the overall number of intervals collected over the window, 
irrespective of the shape of the interval pdf. Therefore, we 
view the changes in time at the high frequency bins as a 
measure of instantaneous rate. 

Using the example of Fig. 10, let us consider now the 
properties of the ensemble of interval histogram, collected 
over several successive filters. If we consider the filters sur- 
rounding H I ,  they all resolve the 100 Hz frequency component 
and contribute intervals to the same bin (located at 100 Hz). 
Therefore, the magnitude of the EIH at this bin can be viewed 
as a measure of the number of level-crossing detectors and the 
number of successive filters that are synchronized (or phase- 
locked) to the 100 Hz underlying component. If we consider 
the filters surrounding H z ,  they all result in output signals 
similar to yz( t )  of Fig. 10. The change with time of the corre- 
sponding EIH bin can, therefore, be viewed as a measure of the 
extent of coherent instantaneous-rate activity across the array. 

In summary, choosing a bin allocation and a window 
length that are matched to the bandwidth characteristics of the 
cochlear filters provide a unified representation that exhibits 
fine frequency resolution at low CF’s (based on a measure of 
synchrony), and fine temporal resolution at high CF’s (based 
on a measure of instantaneous rate). There is no distinct 
boundary that signals the switch from one type of measurement 
to the other. Rather, the change in properties is gradual. 

111. USING THE EIH IN A RECOGNITION TASK 

In this section we examine the extent to which the EIH is 
capable of mimicking human performance in a task related 
to speech recognition. We confine ourselves to a recognition 
task with a minimal cognitive load since we are aiming at 
measuring the performance of the EIH, in isolation from 
the other parts of the evaluation system. We first identiFy 
a psychophysical experiment that addresses such a task, the 
diagnostic rhyme test (DRT) [33] and collect data on how 
accurate a human listener is in performing the task. Next, 
we simulate the DRT procedure. The auditory periphery is 
replaced by the EIH and the higher auditory elements by an 
automatic speech recognition system especially designed to 
keep the errors due to the decision process to a minimum. 
Errors are displayed in terms of a distribution among six 
phonemically distinctive features. The error pattems of the 
simulated procedure are compared with those of the human, 
to provide quantitative measure on how close the model 
performance is to the actual human performance. The DRT 
is described in Section 111-A, the simulated DRT in Section 
111-B and the experimental results in Section 111-C. 

A. Brief Description of Voiers’ DRT 
The psychophysical experiment that we selected is the 

one used in the standard DRT, suggested by Voiers [33]. In 
general, the DRT test attempts to evaluate how well phonemic 
information is perceived by a human listener. The test is 
divided into two parts, measuring the human performance (via 
psychophysical experiments) and deriving an intelligibility 
score. For our purposes only the first part, i.e., the data 
collection, is relevant. As we shall see momentarily, the test 
is appropriate for our needs for two reasons. First, from the 
acoustic point of view the DRT database spans the speech 
subspace associated with initial diphones in a uniform manner. 
Hence, the performance of the EIH is examined in terms of 
its capability to represent all possible cells in that speech 
subspace. And second, it allows us to separate the effects of 
the auditory periphery from those due to cognition. 

Voiers’ DRT database covers initial diphones of spoken 
words of the consonant-vowel-consonant (CVC) type. Table I 
shows the list of words used in the DRT. The list consists of 
96 pairs of confusable words spoken in isolation. Words in a 
pair differ only in their initial consonants. The consonants are 
equally distributed among six phonemic distinctive features 
(16 word-pairs per feature) and among eight vowels. The 
feature classification follows the binary system suggested by 



GHITZA: AUDITORY MODELS AND HUMAN PERFORMANCE 123 

TABLE I 
S m u s  WORDS USED IN THE DRT 

Voicing Nasality Sustention 
Voiced-Unvoiced Nasal-Oral Sustained-Interrupted 

veal-feel meat-beat Vee-bee 
bean-peen need-deed sheet-cheat 
gin-chh mitt-bit vill-bill 
dint-tint nip-dip thick-tick 
z d u e  moot-boot foo-pooh 
dune-tune news-dues shoes-choose 
voal-foal moan-bone those-doze 
goat-coat note-dote though-dough 
Zd-said mend-bend 
dense-tense neck-deck 
vast-fast mad-bad 
gaff-calf nab-dab 
vault-fault moss-boss 

then-den 
fence-pence 
than-Dan 
shad-chad 
thong-tong 

daunt-taunt gnawdaw shaw-chaw 
jock-chock mom-bomb von-bon 
bond-pond knock-dock vox-box 

Compactness Sibilation Graveness 
Compact-Diffuse Sibilated-Unsibilated Grave-Acute 

yield-wield z.ee-thee weed-& 

hit-fit jilt-gilt bid-did 
gill-dill sing-thing fin-thin 
C~P-POOP juice-goose moon-noon 

ghost-boast Joe-go bowl-dole 
ShOW-SO sole-thole fore-thor 

key-tea cheep-keep peak-teak 

you-rue chew-coo pool-tool 

keg-peg 
yen-wren 
gat-bat 
shag-sag 
yawl-wall 

jest-guest met-net 
Chak-care pent-tent 
jab-dab bank-dank 
Sank-thank fad-thad 
jaws-gauze fought-thought 

caught-taught saw-thaw 
hop-fop jot-got 
got-dot chop-cop 

bond-dong 
wad-rod 
pot-tot 

Jakobson, Fant, and Halle [16].3 The vowels are [eel (like in 
peen) and [it] (like in bit) for high-front vowels, [eh] (like in 
zed) and [at] (like in fast) for high-back vowels, [OO] (like in 
zoo) and [oh] (like in note) for low-front vowels, and [awl 
(like in boss) and [ah] (like in bond) for low-back vowels. 

The psychophysical procedure is very carefully controlled. 
The listeners are well trained and are very familiar with the 
database, including the voice quality of the individual speak- 
ers. A one-interval two-altemative forced choice (112AFC) 
paradigm is used. First, the subject is presented visually with 
a pair of rhymed words. Then, one word of the pair (selected 
at random) is presented aurally and the subject is required to 
indicate which of the two words was played. This procedure 
is repeated until all the words in the database have been 
presented. The errors can be displayed either in terms of a 
confusion matrix (between consonants), or as a distribution 
among the six phonemic distinctive features. 

The six features are Voicing, Nasality, Sustention, Sibilation, Graveness, 
and Compactness. The Voicing feature characterizes the nature of the source, 
being periodic or nonperiodic. The Nasality feature indicates the existence 
of a supplementary resonator. The terms Sustention and Sibilation are due 
to Voiers. They correspond respectively to the continuant-interrupted and 
strident-mellow contrasts of Jakobson, Fant and Halle. Finally, Graveness 
and Compactness represent broad resonance features of the speech sound, 
related to place of articulation. 

TABLE II 
STIMULUS WORDS USED IN THE DALT 

Voicing Nasality Sustention 
Voiced-Unvoiced Nasal-Oral Sustained-Interrupted 

seethe-seed teethe-teeth screen-screed 

goof-goop mood-moot noon-nude 
both-boat brogue-broke moan-mode 
chief-cheep liege-leash gleam-glebe 
give-gib ridge-rich rim-rib 
soothe-sued prove-proof tomb-tube 

rev-reb led-let hen-head 
calve-cab have-half lam-lab 
froth-fraught jaws-joss brawn-broad 
Slav-slob hodge-hotch nom-nob 
flesh-fletch peepeck gem-jeb 
path-pat lathe-lath fan-fad 
frothe-fraud flaws-floss long-log 
bosh-botch fob-fop bombbob 

dish-ditch j i b - m  Mg-rig 

jove-job (e) loathe-loath gloam-globe 

Graveness Compactness Sibilation 
Grave-Acute Compact-Diffuse Sibilated-Unsibilated 

peach-peak sheave-sheathe league-lead 
kiss-kith skim-skin 
sues-soothe rufe-ruth fugue-feud 
poach-poke oaf-oath bloke-bloat 

hick-hit 

neap-neat breeze-breathe 
bridge-brig miff-myth 
truce-truth rube-rude 

lobe-load clothexlothe 
bess-beth deaf-death 

creek-creep 
sling-slim 
luke-loop 
rogue-robe 
mesh-mess 

badge-bag dab-dad lag-lad 
ross-wroth shawm-shawn dog-daub 
notch-knock toptot cock-cot 
ledge-leg web-wed egg-ebb 
mass-math raff-rath knack-nap 
maws-mothe trough-troth gong-gone 
bodge-bog sauve-swathe chock-chop 

Two points are noteworthy. First, since it is a discrimination 
test, we can categorize the DRT as a speech recognition 
task. And second, due to the controlled nature of the test 
procedure, we assume that all cognitive information needed 
for the discrimination task is available to the listener prior 
to the aural presentation. (Of course, we also assume that 
the subject is indeed utilizing all this information.) If this 
assumption is correct, an error in identifying the word is due 
mainly to inaccuracy in the intemal auditory representation of 
the stimulus. Hence, the error list provided by the test reflects 
errors in the intemal human auditory representation during the 
discrimination task. 

B.  Simulating the DRT (After [lo]) 
In the simulation, the peripheral part of the auditory pathway 

is modeled by the EIH, and the cognitive process is replaced by 
an array of recognizers, one for each pair of words in the DRT 
database. The errors due to the recognition procedure should 
be kept to a minimum, so that the overall detected errors are 
due mainly to inaccuracies in the front-end representation. 

1) The Recognition System: A recognizer in the array rep- 
resents one DRT word-pair. For a test word (from a given 
word-pair), the recognizer makes a maximum likelihood deci- 

, 
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sion between two hidden Markov (HMM) word models, one 
for each word in the pair. An HMM word-model is defined as a 
left-to-right phonemic sequence. Each state of the HMM word- 
model represents one phonemic unit. The recognizer used is 
an HMM recognizer with time-varying states, suggested by 
Ghitza and Sondhi [12]. In this recognizer, a state of the 
HMM represents one phonemic unit in terms of a time-varying 
mean sequence of ordered frames-a template-and a block 
covariance matrix that characterizes the intra-frame statistical 
dependence within the phonemic unit. The particular phonemic 
unit that was selected is a diphone. In this way the dynamic 
nature of coarticulation between two successive phonemes is 
represented accurately, and the ability to discriminate between 
the initial consonants of the DRT words is improved. 

For every word in the DRT database, the HMM word- 
model has a trivial transition matrix that allows only one 
deterministic transition (from the first diphone to the second). 
For such a simple transition matrix, the HMM model reduces 
to a modified version of the dynamic time warping (DTW) 
method of speech recognition (e.g., [36]).  In this framework, 
a word-model for a CiVCf word is a concatenation of two 
state-templates CiV and VCf, and the decision between the 
two word models is a minimum distance decision. The 
input-word and the word-models are represented in terms of 
ordered sequences of frames (or observation vectors). The 
distances between the word-model sequences and the input- 
word sequence are measured as defined in the DTW method: 
we first define d(a, b) to be the distance between any two 
single observation vectors, a and b as 

-1 

d(a, b) = (a - b ) ’ c ( a  - b). ( 5 )  

Here, ’ denotes vector transpose, and is a covariance matrix 
whose (i,j)th entry is the covariance between the ith and 
the jth components of the observation vector. For = I, 
d(a, b) is simply the &-norm of the difference between a 
and b. In terms of d, we can define the distance between 
the sequences Oi and @ by the usual DTW procedure. Let 
ok, m = 1,2,  . . . , M be the observations in sequence O’, 
and oi ,  n = 1,2,  . . . , N the observations in sequence Oj. We 
define D(Oi ,Oj )  as 

(6)  

The mapping m(n) is constrained such that m(1) = 1 and 
m ( N )  = M. Thus D(Oi ,  Oj) is the average distance between 
corresponding observation vectors in the two sequences, after 
the sequence 0 3  has been optimally warped onto the sequence 
02. 

2) Simulating the One-Interval-Two-Alternative-Forced- 
Choice Paradigm: To eliminate effects due to variability 
among speakers, the simulation is done on a speaker-dependent 
basis. Every speaker provides two repetitions of the DRT 
word-list, one for training and one for testing. As a part of 
the training phase, a vocabulary of diphones is obtained for 
each speaker by segmenting the training part of the database 
manually. The inventory covers all the diphones that appear 

l N  

N m(n) n=l 
~(02, oj) = - min ~ ( O : , O ; ( ~ ~ ) .  

Vocabulary of states (diphones) 

U .  5 de da ZE nt & 
di ga gE nu ba p’ 

speech (I HMMrecogn er output 

* /  I 

p-1-k or t-1-k pikltik 
pi.ti,ik 

moon Ia%Z nwn mu,nu,un 
m-u-n or n-u-n 

munlnun 

Fig. 11. An illustration of the DRT simulation procedure. To test the 
word-pair peuklfeak, for example, the state models for the diphones pi, ri 
and ik are drawn from the states vocabulary, along with the appropriate 
transition matrix that allows only the necessary transitions. The recognizer 
is then presented with the wordpeak, and produces a phonemic transcription 
which is either p-i-k or t-i-k. If the first transcription occurs, the result of the 
simulated discrimination task is considered to be correct. Otherwise, an error 
is registered. Next, the wordteak is tested. Identical state models and transition 
rules are used, and the same sequence of steps is repeated. This concludes 
the test for this word-pair. To test the next word-pair (e.g, moonlnoon) the 
recognizer is loaded with new state models (mu, nu and un) and a new 
transition matrix, and the above procedure is repeated. 

in the DRT word list. If several tokens of a particular diphone 
appear in the DRT word list, the diphone is represented by 
only one of these tokens. 

The testing phase is a simulation of the 112AFC paradigm. 
For testing a particular word-pair, the recognizer is first loaded 
with the appropriate diphone-state models (drawn from the 
inventory) and transition matrices. This step simulates the 
effect of the visual presentation of the word-pair to the 
listener. Then, the two words are presented one at a time to 
the recognizer, analogously to the aural presentation to the 
listener. Based on the recognizer’s phonemic transcription, it 
is decided whether or not the word was correctly recognized. 
This procedure is repeated until all the word pairs in the 
database have been scanned. The overall error list is displayed 
in terms of a distribution among the 6 phonemic features. 

Fig. 11 illustrates the simulation procedure. To test the 
word-pair peaklteak, for example, the state models for the 
diphones pi, ti and ik are drawn from the state vocabulary, 
along with the appropriate transition matrix that allows only 
the necessary transitions. The recognizer is then presented with 
the word peak, and produces a phonemic transcription which 
is either p-i-k or t-i-k. If the first transcription occurs, the result 
of the simulated discrimination task is considered to be correct. 
Otherwise, an error is registered. Next, the word teak is tested. 
Identical state models and transition rules are used, and the 
same sequence of steps is repeated. This concludes the test for 
this word-pair. To test the next word-pair (moonlnoon, in Fig. 
l l) ,  the recognizer is loaded with new state models (mu, nu 
and un) and a new transition matrix, and the above procedure 
is repeated. Note that in testing the word-pair peenlbean, the 
state model for the diphone pi (which is required to model 
the word peen) is the same state model used previously for 
the word peak. 
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C .  Experimental Results 
1) Signal conditions: Three male speakers were used, two 

from Voiers’ database (speakers RH and CH). Each speaker 
provided two repetitions of the DRT word-list, one for training 
and one for testing. The signals were lowpass filtered to 
3600 Hz and sampled at an 8-kHz rate. A “noisy” version 
of the testing repetitions was created by adding white noise to 
the original (“clean”) signals. The signal-to-noise ratio (SNR) 
was 10 dB! The noisy version was sent to Dynastat Inc. (a 
company established by Voiers) for the psychophysical eval- 
uation. To comply with Dynastat’s procedure, the processed 
words were recorded at a rate of a word every 1.3 s. For 
the recordings to sound continuous over time, we first set the 
variance of the white noise generator to a level that remained 
unchanged until all the words in the DRT word list had been 
recorded in sequence. To record a particular word, the speech 
signal was amplified (or attenuated) by a gain factor that was 
calculated in advance, to maintain the desired global SNR. 

As pointed out before, the DRT simulation is performed on 
a speaker-dependent basis-to eliminate errors due to between 
speaker variability. A single-speaker simulation procedure 
(training and testing) is repeated for every speaker in the 
database. 

For training, the vocabulary of diphones was created from 
the clean repetition of the DRT word-list assigned for training. 
For testing, we used the same noisy versions that were sent 
to Dynastat Inc. 

2) Analysis Methods: We tested two speech representation 
methods, the EIH and the Fourier power spectrum. The audi- 
tory model for the EIH representation is described in Section 
11. The model uses 190 cochlear channels and five thresholds 
per channel. An EIH observation was computed once every 
10 ms. The interval statistics at time t o  are collected from 
all 950 (190 times 5) threshold detectors, using all simulated 
firing records which exist in the windows that end at time t o  
(see Fig. 7). The length of each window is 10 /(CF), where 
CF is the characteristic frequency of the cochlear channel. The 
interval statistics are collected into a 32-bin vector, where the 
bins divide the frequency range [O, 40001 Hz according to the 
ERB-rate scale. The sum over the 32 bins was normalized to 
1, to eliminate the effect of ‘‘loudness.” 

For the Fourier power spectrum, an eleventh-order cepstral 
representation was computed every 10 ms. That is, the feature- 
vector under consideration is the Fourier spectral envelope. 
At time to,  the cepstral coefficients are derived from the tenth- 
order LPC coefficients, computed from a 30 ms-long Hamming 
window centered at to. The first cepstral coefficient (CO) was 
set to 0 and only the next 10 coefficients were used. In this 
way, the envelope is normalized in the sense that the average 
value of the LPC log spectrum is 0. 

SNR = 1WB 

4The SNR was defined using global measurements. First, the total energy, 
 ET^^, of the original (noise-free) word was computed. Then, the average 
energy per digital sample, Esamp. was determined, by dividing  ET^^ by the 
number of sample points in the signal. Esamp was used to set the variance 
of a white noise generator to a level dependent on the desired global-SNR. 
This definition of global-SNR overestimates the actual signal to noise ratio 
during the consonantal segments since the magnitude of the noise is largely 
dependent on the amplitude of the vocalic portion of each word. 

+ - + - + - + - + - + - + - + - + - + - + - + -  
vc ns st sb gv cm vc ns st sb gv cm 

+ - + - + - c - + - + - + - + - c - + - + - + -  
vc ns st sb gv cm vc ns st sb gv cm 

Fig. 12. Distribution of errors made by the human listener, an EIH with an 
ERE3 bin allocation and a Fourier power spectrum, in a 10 dE3 signal-to-noise 
ratio. The left-upper plot is a superposition of the other three plots, excluding 
the confidence intervals. The abscissa of every plot indicates the six phonetic 
features: “vc” is for Voicing, “ns” for Nasality, “st” for Sustention, “sb” for 
Sibilation, “gv” for Graveness, and “cm” for Compactness. The “+” sign 
stands for attribute present and the “-” sign for attribute absent. The line 
connecting the measurements is only for display purposes, to enable the reader 
to distinguish between error pattems that belong to a particular parameter 
value. The noise is additive and white, and the signal-to-noise ratio is defined 
using global measurements (see text). Note that an error value of 100% in 
a given phonemic category means that all 16 words in the category were 
mistakenly identified as their DRT counterparts. 

As for the recognition system, the distance measures d and 
D of (5) and (6) were used, respectively. For d, we used 

= I (i.e., d is the Lz-norm of the difference vector). The 
same distance measures were used for both analysis methods. 
We shall discuss the implications of this choice for d and D 
in Section V. 

3 )  Results: The raw data that summarizes the outcome of 
one experimental run (i.e., one speaker) are organized in the 
form of a matrix with 12 rows and 16 columns. Each row 
represents a phonemic category (attribute present or attribute 
absent for each of the six phonemic features-see Table I), 
and each column represents a word in the DRT word-list, 
associated with the corresponding row. For the simulated 
procedure, an entry in the matrix is a binary number, a 0 (for 
a correct answer) or 1 (for an error). For the psychophysical 
procedure, the value of a matrix element is an integer number 
between 0 and 8 and it indicates the number of listeners who 
made a mistake in identifying the Corresponding word (8 is 
the number of listeners participating in the test). Calculating 
statistics across the columns, we computed the average error 
and the 95% confidence interval for every row (i.e., for every 
phonemic category we averaged across all vowels and all 
listeners). Then, we averaged across all speakers. 

Fig. 12 shows the resulting e m r  distribution. The abscissa 
of every plot indicates the 12 phonemic categories: “vc” is 
for Voicing, “ns” for Nasality, “st” for Sustention, “sb” for 
Sibilation, “gv” for Graveness, and “cm” for Compactness. 
The “+” sign stands for attribute present and the “-” sign for 
attribute absent. The figure contains four plots, where the left- 
upper plot is a superposition of the other three plots, excluding 
the confidence intervals. Note that the line connecting the 
measurements is only for display purposes, to enable the reader 
to distinguish between error patterns that belong to a particular 
parameter value. 
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Three points are noteworthy. First, the human observer 
performs much better than the EIH and Fourier power spec- 
trum. Second, on the average EIH is more robust to noise 
than the Fourier power spectrum, in agreement with previous 
reports (e.g, [9]). And third, errors made by the Fourier power 
spectrum analyzer are mainly in the presence of Voicing, 
Nasality, Sustention and Sibilation, while errors made by the 
EIH are mainly in the presence of Voicing and the absence 
of Sustention. (We will show later (in Section V-A) that other 
measures of interval statistics lead to improved results, and 
that the EIH performance can be brought closer to that of a 
human observer (see Fig. 16).) 

IV. USING THE EIH TO PREDICT MEAN-OPINION-SCORE 
(MOS) OF SPEECH CODERS 

In this section we examine the extent to which the EIH is 
capable of mimicking human judgement of speech quality. We 
follow the methodology used in Section 111: first, we identify a 
psychophysical experiment that addresses this task. Then, we 
collect data on how the human listener scores the quality of 
synthetic speech produced by different speech coding systems. 
Finally, we use the EIH as a basis for a system aiming at 
predicting the human scores. 

The psychophysical experiment that was selected is the 
MOS test, which is widely used to assess the quality of speech 
coders. It is a subjective test that can be categorized as a 
rating procedure. Subjects are presented, once, with a speech 
sentence and are requested to score its quality using a scale 
of five grades. The grades (and their numerical aliases) are 
Excellent (5) ,  Good (4), Fair (3), Poor (2) and Bad (1). The 
MOS is the mean score, averaged over the database and the 
subjects. 

It is obviously interesting to find out how adequate EIH is 
in predicting MOS. Since EIH is computed from simulated 
auditory nerve responses modeled in considerable detail, we 
may hypothesize that it contains only perceptually-relevant 
speech information. If this hypothesis holds, perceptual dif- 
ferences between the original and the coded speech should 
be realistically reflected in the EIH domain. To examine this 
hypothesis, we mimicked the MOS test by measuring the La- 
norm of the difference between the EIHs of the original and 
the synthetic speech. For reference purposes we also compared 
the original and the coded speech in the cepstral domain, using 
the La-norm metric. (We are aware of numerous methods for 
an objective quality assessment of coded speech (e.g., [20], 
[28], [35]), but a detailed comparison is beyond the scope of 
this paper). 

A. Database 
We collected MOS scores for 18 different speech coding 

conditions. The assessed coders were a 64 kbit/s p-law PCM, 
two versions of a 32 kbit/s ADPCM, a 16 kbit/s LD-CELP, 
two versions of a 8 kbit/s CELP and three versions of a 6.6 
kbit/s CELP.’ The ADPCM and LD-CELP coders were tested 

p-law PCM and ADPCM are described by [17]. LD-CELP is described 
by [2]. A description of CELP can be found in [21]. 

in four tandem configuratiom6 The speech material contained 
sentences spoken by four male and four female speakers, each 
contributing two sentences. 

B. Analysis Methods 

For each coding condition, the coded waveform was first 
aligned (in time) with the original waveform. The EIH rep- 
resentation was computed as described in Section 111-C-2. 
The original and the coded speech signals were sampled 
synchronously. At time to. an La-norm of the difference 
between the normalized EIHs of the original and the coded 
speech was calculated first. This “frame” distance was than 
weighted by the “loudness” of the original speech at this time 
instant. (Our definition of loudness is the sum over the 32 bins, 
prior to normalization). The “EH-distance’’ between a coded 
speech sentence and the original is defined as the mean value 
of the weighted frame distances over the entire sentence. 

The cepstral representation was computed as described in 
Section 111-C-2. The original and the coded speech signals 
were sampled synchronously. At time t o ,  an &-norm of the 
difference between the normalized cepstra of the original and 
the coded speech was calculated first. This “frame” distance 
was then weighted by the CO of the original. The “Cepstral- 
distance” between a coded speech sentence and the original 
is defined as the mean value of the weighted frame distances 
over the entire sentence. 

C .  Experimental Results 

Figs. 13 and 14 summarize the results. The abscissa in- 
dicates the MOS and the ordinate the EIH-distance (see 
Fig. 13) or the Cepstral-distance (see Fig. 14). We grouped 
the results according to coder identity (left) or according to 
tandem configuration (right). A particular coding condition 
can be located by a cross-alignment of the left and the right 
plots. MOS values, by definition, are between 1 (bad) and 5 
(excellent). For the coders we used, EIH-distance values are 
between 0 (perfect match to original) and 8, and Cepstral- 
distance values are between 0 (perfect match) and 6. In our 
database, for example, p-PCM has an MOS of 4.2, an EIH- 
distance of 1.2 and a Cepstral-distance of 1.2. 

Fig. 13 shows that EIH successfully predicts MOS of coders 
with a bit-rate of 16 kbit/s and above. For this group of 
coders, EIH-distances and MOS are linearly related. However, 
MOS of the CELP coders are poorly predicted. These coders 
stand as a separate group in the MOS-EIH plane, with EIH- 
distances that are above the linear regression line that fits the 
other coders. Below, in Section V-A, we shall discuss possible 
reasons for this behavior. 

Fig. 14 shows the extent to which the Cepstral-distance 
predicts the MOS. The scatter among the coders with a bit- 
rate of 16 kbit/s and above is higher than the scatter observed 
in Fig. 13. However, the group of CELP coders is properly 
merged with the rest of the coders. 

A tandem connection is a configuration used in communication networks, 
where several speech coders are connected in series. In a 2-tandem connection 
of ADPCM coders, for example, the synthetic speech produced by one 
ADPCM coder is passed through a second ADPCM coder. The synthetic 
speech produced by the second coder is the signal used for testing. S e e  [17]. 
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Fig. 13. EM-distance versus MOS. The results are grouped according to 
coder identity (left) or according to tandem configuration (right). A particular 
coding condition can be located by a cross-alignment of the left and the right 
plots. 
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Fig. 14. Cepstral-distance versus MOS. Figure legend is as in Fig. 13. 

V. DISCUSSION 

A. Possible Reasons for Deficiency in Performance 
The evaluation process of Sections I11 and IV demonstrates 

that generally, performance is improved by replacing a con- 
ventional speech representation by the auditory model, but is 
still short of achieving human performance. The shortcomings 
occur, in particular, in tasks related to low bit-rate coding and 
to speech recognition. In this section we discuss possible rea- 
sons for this deficiency. From the outset, we assume that EIH is 
an appropriate representation for an acoustic signal. This is so 
since the EIH is constructed from a detailed simulation of the 
human auditory-nerve firing patterns, using rules derived from 
general properties of observed auditory nerve activity in the cat 
(e.g., synchrony in low CF's, instantaneous rate in high CF's). 
The deficiency, therefore, may be the result of inappropriate 
use of the EIH in the context of speech processing. 

The experiments in Section IV demonstrate that using the 
La-norm in the EIH domain is appropriate only if the coded 
speech is of high quality (bit-rate of over 16 kbit/s). However, 
this same measure fails to predict MOS of CELP coded 
speech. What is the reason for this behavior? Fig. 15 shows 
the representation of the vowel [it] (like in bit) produced by 
a male speaker. The upper plot contains the high-resolution 
Fourier magnitude spectrum computed by a 128-point discrete 
Fourier transform, using a 20-ms Hamming window. It also 
contains the envelope fit achieved by an tenth-order all-pole 
polynomial-fit. The plot uses a log-frequency/decibel scale. 
The lower plot is the EIH representation of the same signal. 
The EIH plot is in a linear-ERBhinear-EIH scale. (Note that 
the abscissa spans the frequency range [250,4000] Hz. In this 
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Fig. 15. Amplitude spectrum and E M  representations of the vowel [it] 
(like in bit) produced by a male speaker. The upper plot contains the 
high-resolution Fourier magnitude spectrum computed by a 128 point discrete 
Fourier transform, using a 20-ms Hamming window. It also contains the 
envelope fit achieved by an tenth-order all-pole polynomial-fit. The plot uses 
a log-frequency/decibel scale. The lower plot is the EM representation of the 
same signal. The EM plot is in a linear-ERBAinear-EM scale. Note that the 
abscissa spans the frequency range [250, 40001 Hz. In this frequency range, 
the ERB-rate scale overlaps with the log-frequency scale. 

frequency range, the ERB-rate scale overlaps with the log- 
frequency scale.) Since it reflects the tonotopic organization 
along the auditory pathway, the ERB-rate is a natural scale for 
the EIH, and was used during the experiments of Sections I11 
and IV. The EIH spans the first 1000 Hz by approximately half 
the number of bins, and with fine frequency resolution. This 
results in a detailed representation of the first few harmonics, 
as shown in the figure. In turn, an &-norm of the difference 
between two such EIHs is very sensitive to the value of the first 
few individual frequency components. Consequently, EIH is 
a good predictor of MOS only if the two speech observations 
under comparison are similar enough (such that differences 
are localized in time and frequency). Indeed, this is the case 
for those coders in our database with a bit-rate of 16 kbit/s 
and above. For the CELP coders, however, differences are not 
localized. Saving bits in low bit-rate coders relies on perceptual 
tolerance to changes that extend over durations of several 
frames. In order to achieve synthetic speech with an acceptable 
quality, these coding schemes are designed to spread the differ- 
ences between the original speech segment and the synthesized 
segment smoothly over the entire segment. Consequently, a 
comparison between two single observation taken at the same 
time instant, one from the original waveform and one from 
the CELP coded waveform, will result in an irrelevant large 
errors due to the misalignment of the harmonics. Note that the 
Cepstral-distance is insensitive to the location of individual 
harmonics since the &-norm is measured between the spectral 
envelopes (via the 1 lth-order cepstra). 
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Fig. 16. Distribution of errors made by the human listener, an EM with 
an ERB bin allocation (from Fig. 12) and an EM with a linear bin allocation 
(from [IO]) in a 10 dB signal-to-noise ratio. Figure legend is as in Fig. 12. 

A similar observation can be made when examining the 
recognition experiment of Section 111. Speech recognizers 
rely on measuring a distance between phonemic/articulatory 
information that extend over durations of 50-100 ms, very 
much like low bit-rate coders. In the simulation of the 112AFC 
procedure we compared two speech segments of such du- 
ration, the state-template CiV and the input segment, each 
represented as an ordered sequence of single observations. 
Even when these speech segments carry the same phonemic 
information, they usually differ in their length and in the 
way this information is manifested over the segment duration. 
Two sources of errors are noteworthy. First, an La-norm type 
of measure between two EIH observations is inappropriate. 
For recognition tasks, we seek a measure that will reflect 
the phonemic distance between the speech observations. The 
exact location of individual harmonics is not relevant to the 
identity of a phoneme, and large errors due to misalignment 
of the harmonics will mask the useful error information. 
(This observation holds even for speaker-dependent speech 
recognition tasks, such as the one examined in Section 111). Fig. 
16 demonstrates this point. The right-upper plot (performance 
of a human listener) and the left-lower plot (EIH with an ERB 
bin allocation) are from Fig. 12. The right-lower plot (EIH with 
a linear bin allocation) is from [lo]. In that study, the error 
distribution was obtained using the same method described 
in Section 111. The parameters of the MBPNL cochlear filters 
and the allocation of the level-crossing detectors were as in 
Section 111-C-2, but the interval-histogram bins were assigned 
differently, using 128 linearly spaced bins ranging from 0 to 
4000 Hz. Mathematically, EIH was treated as a log spectrum 
(recall that the levels are equally distributed on a log scale) 
and the feature-vector was a 25th-order cepstral fit, obtained 
by computing the inverse DFT of the EIH and by truncating 
the resulting cepstral series. 

Although the overall number of errors of the two EIH 
configurations in Fig. 16 is almost the same, the error dis- 
tribution of the EIH with the linear bin allocation better 
predicts the error distribution of the human observer. Since 
the same recognizer have been used in both experiments, 
the improvement in performance is due to the difference 
between the feature vectors which is mainly dictated by the 
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Fig. 17. A replication of Fig. 15, in a linear-frequency scale. The upper 
plot contains the same high-resolution Fourier magnitude spectrum and the 
same envelope fit, plotted over a linear-frequency/decibel scale. The lower 
plot shows the EM representation with a linear bin allocation (128 bins over 
[0,4000] Hz) and the corresponding envelope fit, achieved by computing the 
inverse DIT of the EM and truncating the cepstral series at C25.  

nature of the bin allocation (all other parameters of the EIH 
configurations are identical). Using a linear-frequency scale 
turns out to be advantageous for recognition since only one 
quarter of the number of bins is used for the first 1000 
Hz. Therefore, a cepstral fit of the EIH becomes effective 
in smoothing out individual harmonics and, in tum, the La- 
norm is no longer sensitive to their location. (This is illustrated 
in Fig. 17 which replicates Fig. 15, in a linear-frequency 
scale. The upper plot contains the same high-resolution Fourier 
magnitude spectrum and the same envelope fit, plotted over a 
linear-frequency/decibel scale. The lower plot shows the EIH 
representation with a linear bin allocation (128 bins over [O,  
40001 Hz), and the corresponding twentyfifth-order cepstral 
envelope fit. Obviously, the harmonic information is no longer 
presented in the envelope fit of the EIH). At this point, the 
reader may wonder why we prefer the ERB-rate scale over 
the linear-frequency scale, even though the latter results in a 
better fit to human performance. We study the EIH with an 
ERB bin allocation because it represents more realistically the 
actual organization of the auditory periphery. Working with 
this scale, although leaving us with an unresolved question 
(namely, what is the appropriate measure between two such 
EIH observations), provides the appropriate framework for un- 
derstanding the strategy of the human observer in performing 
this task. 

The second noteworthy source of errors is the way we 
measure the distance between two speech segments that extend 
over durations of, say, 50-100 ms. In the simulation of the 
112AFC we used D(Oi, Oj) of (6) to measure the distance 
between two sequences Oi and Oj, where D(02, Oj) is the 
average distance between corresponding single observation 

, 
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vectors in the two sequences, after the sequence Oj has been 
optimally warped on to the sequence Oi. But, recent study on 
the perceptual effects of modifications in the time-frequency 
domain [ 111 indicates that a human observer utilizes a much 
more complex strategy. Next, we briefly summarize that study. 

0 U 
OD 

B.  The Tiling Study (After (111) 

The study was aimed at understanding how auditory nerve 
activity is integrated over intervals of 50-150 ms, and over 
diphones in particular. From the outset, it was assumed that 
distinct peripheral auditory functions do exist which operate on 
different sections of the auditory nerve. Due to the tonotopic 
organization of the auditory nerve fibers, the nature of these 
auditory functions, as well as their accuracy of performance, 
can be inferred from psychophysical data on the perception 
of acoustic information contained in different time-frequency 
regions. Obtaining this psychophysical data was the subject of 
the study. 

A database was used which covers the speech subspace 
associated with initial and with final diphones. It comprised 
two parts, Voiers’ old DRT database for initial diphones 
(described in Section 111), and a new database, also designed 
by Voiers and termed diagnostic alliteration test (DALT), for 
final diphones [34]. Tables I and I1 show the lists of words in 
the DRT and the DALT, respectively. Like the DRT database, 
the DALT database also consists of 96 pairs of confusable 
words spoken in isolation. Each word is of the CVC type, 
and words in a pair differ only in their final consonants. 
The diphones are equally distributed among the same six 
phonemic features and the same eight vowels used in the DRT 
database. 

Modified versions of the database were generated by 
introducing well-defined distortions into pre-selected time- 
frequency regions. Figs. 18-20 illustrate the procedure 
that was used to generate the modifications. Although the 
illustrations (examples and figures) relate to modifications 
of initial diphones in the DRT database, their analogous 
counterparts are appropriate for illustrating modifications of 
final diphones in the DALT database. Fig. 18 shows the 
waveforms and the wideband spectrograms of the DRT word- 
pair shocklmock spoken by the same male speaker. Since the 
words differ only in their initial diphone, the main difference 
between the spectrograms is in the time-frequency region 
associated with those diphones, i.e. the region bounded by the 
bold lines containing the initial consonant (either [SI or [m])  
and the left, coarticulated part of the vowel [a]. 

Fig. 19 shows a diagram of the time-frequency region 
occupied by a spoken CVC word, like the word shock or 
mock of Fig. 18. The time-frequency region of interest (i.e., 
the initial diphone) is subdivided into 6 “tiles.” The frequency 
boundaries (from the bottom up) are 0 Hz, loo0 Hz, 2500 
Hz, and the highest frequency in the band, say 4000 Hz. The 
choice of the frequency boundaries was motivated by observed 
properties of auditory physiology and of speech perception 
[ 1 I]. The time landmarks are (from left to right) the beginning 
of the word (t = 0), the transition from the initial consonant 
to the vowel, and the mid-point of the vowel. 
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Fig. 18. The waveforms and the wideband spectrograms of the DRT 
word-pair shocklmock spoken by a male speaker. Also indicated are the 
boundaries between the phonemes. Since the words differ only in their 
initial diphone, the main difference between the spectrograms is in the 
time-frequency region associated with that diphone, i.e., the region bounded 
by the bold lines containing the initial consonant (either [SI or [m])  and the 
left, coarticulated part of the vowel [ah]. 
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Fig. 19. A diagram of the time-frequency domain occupied by a spoken 
CVC word. The time-frequency region of the initial diphone is divided into 
six “tiles.” The frequency boundaries (form the bottom up) are. 0 Hz, 1000 
Hz, 2500 Hz and 4000 Hz. The time landmarks are (from left to right) the 
beginning of the word (t = 0), the transition from the initial consonant to the 
vowel, and the midpoint of the vowel. 
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Fig. 20. A diagram of the time-frequency domain occupied by a prototype 
DRT word-pair, where the region corresponding to the initial diphones are 
divided into six tiles each. Illustrated is the interchange of the consonantal 
part of the second frequency band. 

Fig. 20 shows a diagram of the time-frequency domain 
occupied by a prototype DRT word-pair, where the regions 
corresponding to the initial diphones are divided into six tiles 
each. To modify the database, an interchange operation was 
performed between the words in the pair. An interchange was 
defined as a “cut and paste” procedure, where a particular 
tile from one word was interchanged with the same tile of 
the opposite word. Once a particular interchange was chosen, 
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Fig. 21. The average human performance and the 95% confidence interval 
for the baseline (i.e., no interchange) versions of the DRT (left) and DALT 
(right). The abscissa is as in Fig. 12. The ordinate is termed “switch,” and 
it represents the number of words in a phonemic category that, when played 
to the listener, were judged to be the opposite word in the word pair (i.e., 
the listener “switched” to the opposite category). The switch is represented in 
percents, relative to 16 (the total number of words per phonemic category). 

it was applied to the entire database. The example of Fig. 
20 illustrates the interchange of the consonantal part of the 
second frequency band. Of course, one can interchange more 
than one tile at a time. 

The modified versions were tested using Voiers’ psy- 
chophysical discrimination task (see Section 111). The 
responses of the subjects were displayed as a distribution 
along Jakobson, Fant and Halle’s phonemic dimensions, very 
much like the displays used in Fig. 12. Detailed discussion 
of the experimental results is beyond the scope of this paper 
(for that, see [I  I]). Highlights of the results are plotted in 
Figs. 21-23. Fig. 21 shows the average human performance 
and the associated 95% confidence interval (among the eight 
listeners) for the baseline versions (i.e., no interchange) of the 
DRT (left) and DALT (right). The abscissa is as in Fig. 12. The 
ordinate is termed “switch,” and it represents the percentage 
of words in a phonemic category that, when played to the 
listener, were judged to be the opposite word in the word pair 
(i.e., the listener “switched” to the opposite category). 

Fig. 22 shows the human response for three selected mod- 
ifications of the DRT database: an interchange of the first 
frequency band, an interchange of the second frequency band 
and an interchange of the third frequency band of the entire 
diphone. The abscissa is as in Fig. 12. As for the ordinate, from 
the measured switches for the selected interchange condition 
we subtracted the number of switches for the baseline version 
(see Fig. 21, left). We termed the ordinate “Aswitch,” since 
it represents the additional number of switches, relative to the 
baseline version, that occurred due to the particular interchange 
operation. The upper right plot shows the amount of Aswitch, 
in percent, when the first frequency band (i.e., [0, 10001 Hz) of 
the initial diphone is interchanged. The lower left plot is for the 
case when the second frequency band (i.e., [IOW, 25001 Hz) of 
the initial diphone is interchanged, and the lower right plot is 
for the interchange of the third frequency band (i.e., [2500, 
40001 Hz) of the initial diphone. Several observations are 
noteworthy. The phonemic dimensions Voicing and Nasality 
are sensitive to an interchange of the first frequency band of 
the diphone, Graveness and Compactness to an interchange of 
the second frequency band of the diphone, and Sibilation to 
the interchange of the thud frequency band of the diphone. 
Sustention is equally sensitive to interchanges of the diphone 
information in the second and the third frequency bands. Such 
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Fig. 22. Human performance under the interchange of each frequency band 
over the entire diphone, on the DRT database. The upper left plot is a summary 
of the other t h e  plots, with the confidence-interval bars omitted. The abscissa 
is as in Fig. 12. The ordinate is termed “Aswitch,” since it represents the 
additional number of switches, relative to the baseline version, that occurred 
due to the particular interchange operation. The upper right plot shows the 
amount of Aswitch, in percent, when the first frequency band of the initial 
diphone is interchanged. The lower left plot is for the interchange of the second 
frequency band, and the lower right plot is for the interchange of the third 
frequency band of the initial diphone. Notice that Voicing and Nasality are 
strongly correlated with the first frequency band of the diphone, Graveness and 
Compactness with the second frequency band of the diphone, and Sibilation 
with the third frequency band of the diphone. 
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Fig. 23. Same as Fig. 22, for DALT. 

a behavior is expected, since the acoustic manifestation of 
“intempt” (which is one of the binary attributes of Sustention) 
is an abrupt temporal change, spread over a wide frequency 
range.) 

Fig. 23 summarizes the human response for similar mod- 
ifications of the DALT database. Somewhat surprisingly, the 
qualitative behavior is similar to that of Fig. 23. However, 
there are quantitative differences, i.e., in the numerical values 
of the Aswitch in various conditions. 

Summarizing the results of this study, the following im- 
portant observations have been noted: 1) the human observer 
uses different time-frequency tiles for different phoneme- 
discrimination tasks, 2) there is a direct mapping between 
phonemic/articulatory features and particular time-frequency 
tiles, and 3) tiles associated with diphones are far more 

, 



GHITZA: AUDITORY MODELS AND HUMAN PERFORMANCE 

important than tiles associated with the consonant part or the 
vowel part alone. We suggest that these observations should 
serve as a guideline to formulate a proper measure, to replace 
D of (6) (and d of (5)). 

VI. SUhmARY 

In this paper we evaluated the adequacy of current periph- 
eral auditory models to mimic human performance, in the 
context of speech recognition and speech coding. Models with 
such a capability are of interest since they can provide a basis 
for realizing effective speech processing systems. We first 
described our auditory model, then we outlined a methodology 
for a quantitative evaluation of the model accuracy, and finally 
we provided a critique of the current status of the model. 

We focused on a particular auditory model, the EIH, that 
was developed using a “bottom-up” approach. Its first stage 
uses knowledge about the functional operation of pre-auditory- 
nerve elements of the auditory periphery to model, in con- 
siderable detail, human auditory nerve firing activity. In or- 
der to achieve human performance, the simulated auditory 
nerve firing patterns would have to be processed according 
to principles derived from properties of post auditory-nerve 
nuclei. Unfortunately, such information is not available at 
present. Our approach, therefore, was to process the simulated 
auditory nerve firing patterns according to principles that 
are motivated by observed properties of the actual auditory 
nerve response. The resulting representation, the EIH, is a 
measure of the spatial (tonotopic) extent of coherent activity 
across the simulated auditory nerve and it signifies different 
physical properties of the acoustic stimulus depending on 
frequency, from synchrony at low frequencies to instanta- 
neous rate at high CF’s. As such, EIH differs markedly from 
traditional speech representation methods and, consequently, 
exhibits quite different properties. The premise is that these 
properties accurately reflect properties of the intemal human 
representation of speech. 

The extent of this accuracy was measured in a quantitative 
manner by comparing the performance of a system that uses 
the EIH representation to that of a human listener while 
performing the same task. This methodology was used in 
tasks related to speech recognition and to speech coding. In 
general, performance was improved by replacing a cepstral 
speech representation by the auditory model, but was still 
short of achieving human performance. The evaluation process 
indicated that the shortcomings occur particularly in tasks 
related to low bit-rate coding and to speech recognition. Since 
schemes for low bit-rate coding rely on signal manipulations 
that spread over durations of several tens of ms, and since 
schemes for speech recognition rely on phonemic/articulatory 
information that extend over similar time intervals, it was 
concluded that the shortcomings are due mainly to a lack of 
perceptually related integration rules over durations of 50-100 
ms. The results of the “tiling” experiment confirmed human 
usage of such integration, with different integration rules for 
different time-frequency regions depending on the phoneme- 
discrimination task. From the perspective of representation 
of speech, we conclude that “snap-shot’’ representations (i.e.. 
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representations that are local in time and frequency) provided 
by current auditory models are inappropriate, and that a 
representation based on integration over time intervals of 
50-100 ms is needed. Also needed is a formulation of a proper 
measure of the difference between two speech segments of 
that duration. 
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